

TURBO

Towards turbine blade production with zero waste
Horizon Europe 101058054

TURBO public presentation

https://turboproject.eu

Presentation outline

Overview

- Consortium
- Key objectives
- Partner contributions

Supporting technologies

- Simulation
- In-line monitoring
- NDT of blade coatings

Manufacturing technologies

- Digital twin
- Improved composite manufacturing
- Sustainability assessment
- TURBO demo

Consortium

No.	Short name	Name	Country
Beneficiaries			
1	DTU	DANMARKS TEKNISKE UNIVERSITET	DK
2	SGRE	SIEMENS GAMESA RENEWABLE ENERGY AS	DK
3	Huebers	HUBERS VERFAHRENSTECHNIK MASCHINENBAU GMBH	DE
4	ESI	ESI GROUP	FR
5	UPV	UNIVERSITAT POLITECNICA DE VALENCIA	ES
6	SYN	SYNTHESITES	BE
7	NORBLIS	NORBLIS APS	DK
8	VIV	VIVID COMPONENTS GERMANY UG	DE
9	ARDITEC	ARDITEC	FR
Associated partners			
10	NCC	NCC OPERATIONS LIMITED	UK
11	SMARTIA	SMARTIA LTD	UK
12	СРІ	CENTRE FOR PROCESS INNOVATION LIMITED	UK

TURBO key objectives

TURBO partner key contributions

TURBO

Horizon Europe

Presentation outline

Overview

- Consortium
- Key objectives
- Partner contributions

Supporting technologies

- Simulation
- In-line monitoring
- NDT of blade coatings

Manufacturing technologies

- Digital twin
- Improved composite manufacturing
- Sustainability assessment
- TURBO demo

Simulation

Image courtesy of DTU Construct

What?

- Numerical simulation combined with sensor data
- Used to minimise defect formation by:
- Defining the manufacturing processes
- Understanding how the process should be modified in real-time in response to in situ monitoring data

How ?

- Multi-scale modelling of the manufacturing process
- From virtual characterisation of the local material properties to high fidelity analysis of the manufacturing of the blade
- Exploring the field of possibilities in real time
- By the combination of advanced AI techniques (model order reduction, machine learning etc.)
- Generating physical-based prediction in a decision support system for the production hybrid sensor

30 meters wind spar cap infusion

Images courtesy of ESI Group

In-line process monitoring

-//sunthesites

- Synthesites TURBO system will
 - Measure resin arrival during infusion and temperature measurement (≤ 56 points)
 - Calculate online resin viscosity and gelation time
 - Track the evolution of glass transition temperature (T_α) at several locations
 - Broadcast all data in real-time to help define system control signals

Images courtesy of Synthesites

- CPI will develop a TURBO embedded wireless sensor system
 - Measures resin arrival and temperature
 - Fabricated on flexible substrate
 - Wireless communications will send data from inside the mould (i.e. LoRaWAN)

Images courtesy of CPI

TURBO

NDT of blade coatings

NATIONAL COMPOSITES CENTRE

 First industrial-scale combined ultrasound and mid-IR optical coherence tomography (OCT) scanner

 High resolution images of the critical upper layers

 Deep penetration of ultrasound combined with new technology of mid-IR OCT

Demonstrated on ship hulls

Petersen, Christian R., et al. "Non-destructive subsurface inspection of marine and protective coatings using near-and mid-infrared optical coherence tomography." Coatings 11: 877 (2021).

TURBO

Horizon Europe

Machine learning analysis for NDT of blade coatings

- DTU will develop a supercontinuum extending to longer mid-IR wavelengths (e.g. 4 μm)
 - These wavelengths penetrate deeper than traditional near-IR OCT systems (typically 1.3 μm)
 - Source is based on a 2 µm laser to pump ZBLAN fibre
- UPV will develop machine learning based algorithms
 - Unsupervised anomaly detection techniques
 - Used to detect and segment different defects in OCT images without annotations

Constrained unsupervised anomaly classification and segmentation

TURBO

Horizon Europe

Presentation outline

Overview

- Consortium
- Key objectives
- Partner contributions

Supporting technologies

- Simulation
- In-line monitoring
- NDT of blade coatings

Manufacturing technologies

- Digital twin
- Improved composite manufacturing
- Sustainability assessment
- TURBO demo

TURBO

Horizon Europe

TURBO digital twin framework

NATION COMPOSE CENTRE

- Smartia and NCC will develop a selfadaptive manufacturing process
 - Digital framework for zero waste wind turbine blade manufacturing
- Key steps:
 - Scale-up of manufacturing and simulation to a full scale blade demonstrator
 - Combine process and sensor data with machine learning and physics-based simulations
 - Provide live manufacturing quality insights and corrective feedback loop control
 - Development of a secure digital twin architecture scalable for industrial production environments

TURBO

Horizon Europe

TURBO digital overview

TURBO

Horizon Europe

Improved composite manufacturing

- Hübers offers the most advanced process and plant technology for blade manufacturing on the market
 - Continuous degassing of material components
 - Constant monitoring of the infusion material mixing ratio processing temperature
 - Direct infusion in a closed system (without buffer/transfer vessels)
 - Active, controlled conveyance of material into the mould
 - Hübers plants are currently in operation at SGRE facilities in Aalborg (DK), Hull (UK), and Le Havre (FR)

Image courtesy of Hübers Verfahrenstechnik Maschinebau GmbH

- TURBO objective and tasks
 - Hübers and SGRE will integrate the TURBO advances into infusion and control systems, particularly
 - Lessons from process simulation
 - Machine-learning based analysis of the digital twin based on in-line process monitoring and NDT
 - These objectives require a:
 - Manufacturing system interface to interpret and process the data from simulation and digital twin
 - Real-time infusion control system (hardware and software) based on data from the in-line sensors and NDT devices during infusion

Sustainability assessments

- Arditec will help to develop circular and sustainable blade manufacturing by:
 - Assessing the environmental, economic and social benefits of the innovative value chain in comparison to current blade manufacturing processes
 - Using standardised life cycle assessment methodologies
 - LCA (ISO 14040/14044)
 - Life Cycle Costing (LCC, ISO, 2006)
 - Social LCA (UNEP/SETAC)
 - Developing circular pathways for production waste
 - Material Circularity Indicator (MCI) methodology developed by the Ellen MacArthur Foundation
 - Contributing to current relevant standards and regulations
 - IEC 61400-5/IEC 61400-28-2/REACH
 - Training SGRE personnel to operate the sensors, apply TURBO NDT methods and interpret the results

RAW MATERIALS

TURBO demo

- SGRE will dedicate space in its Aalborg factory to preparations for the TURBO demo
- A large section of a >80 m blade will be used to demonstrate TURBO advances
 - Allows analysis of large blade aspects not possible on a smaller scale blade
 - Assess how TURBO technology can be integrated into a real production line
 - Quantify benefits in terms of improved quality and reduced scrap

Images courtesy of Siemens Gamesa Renewable Energy A/S.

TURBO

Thank you for your attention!

General enquiries

Bruce Napier; Vivid Components Germany UG

bruce@vividcomponents.co.uk

